How to Solve Radical Equations with Extraneous Solutions: 9 Steps (2024)

Explore this Article

parts

1Removing the Radical

2Finding all Possible Solutions

3Discarding the Extraneous Solutions

Other Sections

Related Articles

References

Co-authored byJohnK Wright V

Last Updated: March 29, 2019

A radical equation is an equation that contains a square root, cube root, or other higher root of the variable in the original problem. “Radical” is the term used for the How to Solve Radical Equations with Extraneous Solutions: 9 Steps (1) symbol, so the problem is called a “radical equation.”[1] To solve a radical equation, you have to eliminate the root by isolating it, squaring or cubing the equation, and then simplifying to find your answer. However, this procedure can create answers that appear to be correct, but are not, because of the squaring process. These are called extraneous solutions. You must learn to identify and discard the extraneous solutions.

Part 1

Part 1 of 3:

Removing the Radical

  1. 1

    Isolate the radical term. The first step to solving a radical equation is to move the radical term to stand alone on one side of the equation. Move all other terms to the opposite side. In this step, if possible, combine any other like terms that may exist.[2]

    • Consider the sample problem How to Solve Radical Equations with Extraneous Solutions: 9 Steps (3). Your first step is to isolate the radical on the left side of the equation, as follows:
      • How to Solve Radical Equations with Extraneous Solutions: 9 Steps (4)
      • How to Solve Radical Equations with Extraneous Solutions: 9 Steps (5) ………. (subtract 4 from both sides)
      • How to Solve Radical Equations with Extraneous Solutions: 9 Steps (6) ………. (combine like terms)
  2. 2

    Square both sides of the equation. To remove the radical sign from the problem, you need to perform its opposite function. The opposite of the square root function is to square both sides of the equation. Be careful, when squaring both sides of the equation, to do so correctly. Recall, for example, that How to Solve Radical Equations with Extraneous Solutions: 9 Steps (8) is NOT How to Solve Radical Equations with Extraneous Solutions: 9 Steps (9). You need to treat the How to Solve Radical Equations with Extraneous Solutions: 9 Steps (10) term as a binomial and square it accordingly.[3]

    • Continue working with the sample problem and square both sides of it as follows:
      • How to Solve Radical Equations with Extraneous Solutions: 9 Steps (11)
      • How to Solve Radical Equations with Extraneous Solutions: 9 Steps (12)
      • How to Solve Radical Equations with Extraneous Solutions: 9 Steps (13)
    • If you need help with this step, you may want to review Multiply Binomials.

    Advertisem*nt

  3. 3

    Repeat the previous steps if necessary. If your original problem contained two or more radical terms, then the first round of isolating and squaring may not have removed all the radicals. If that is the case, then you should, once again, manipulate your equation to isolate the radical that remains and square each side again.[4]

    • An example of such a problem would be something like How to Solve Radical Equations with Extraneous Solutions: 9 Steps (15). Because of the two radicals, you will need to do this procedure twice.

    Advertisem*nt

Part 2

Part 2 of 3:

Finding all Possible Solutions

  1. 1

    Consolidate and combine like terms. After you have eliminated all the radicals from the problem, move all the terms to one side of the equation and combine like terms.[5]

    • Returning to the working sample problem, this looks as follows:
      • How to Solve Radical Equations with Extraneous Solutions: 9 Steps (17)
      • How to Solve Radical Equations with Extraneous Solutions: 9 Steps (18)
  2. 2

    Solve the equation. In most cases, this step will create a quadratic polynomial. This is an equation that contains an How to Solve Radical Equations with Extraneous Solutions: 9 Steps (20) term as its highest variable. If the original radical was something other than a square root (such as a cube root or fourth root, for example), then you may have a more difficult problem. We will focus on the quadratic for this article. You may be able to solve the quadratic equation by factoring, or you can go directly to the quadratic formula.[6]

    • In this case, the sample problem, How to Solve Radical Equations with Extraneous Solutions: 9 Steps (21), can be factored into the two binomial factors of How to Solve Radical Equations with Extraneous Solutions: 9 Steps (22) and How to Solve Radical Equations with Extraneous Solutions: 9 Steps (23).
  3. 3

    Determine your solutions. Factoring the quadratic equation in this case suggests two possible solutions. Because the quadratic equation is equal to 0, you find the solutions by setting each factor equal to 0 and then solve.[7]

    • In the working problem, the two factors are How to Solve Radical Equations with Extraneous Solutions: 9 Steps (25) and How to Solve Radical Equations with Extraneous Solutions: 9 Steps (26).
    • Set each of these equal to 0 to get the solutions How to Solve Radical Equations with Extraneous Solutions: 9 Steps (27) and How to Solve Radical Equations with Extraneous Solutions: 9 Steps (28).
    • With another problem, you may not be able to factor and would then have to use the quadratic formula to find the solution.

    Advertisem*nt

Part 3

Part 3 of 3:

Discarding the Extraneous Solutions

  1. 1

    Recognize the potential for an extraneous solution. Recall that after isolating the radical on one side of the equation, you then squared both sides to remove the radical sign. This is a necessary step to solving the problem. However, the squaring operation is what creates the extraneous solutions.[8]

    • Remember some basic mathematics, that both a negative and a positive number, when squared, will give the same result. For example, How to Solve Radical Equations with Extraneous Solutions: 9 Steps (30) and How to Solve Radical Equations with Extraneous Solutions: 9 Steps (31) both give the answer of How to Solve Radical Equations with Extraneous Solutions: 9 Steps (32). However, both the negative and positive numbers might not be solutions to whatever problem you are solving. The one that does not work is called the extraneous solution.
  2. 2

    Test each of your solutions in the original problem. After you have found the solutions to your problem, you may have found one, two or more different possible values for the variable. You need to check each of these in the original problem to see which work. Remember that the original problem here was How to Solve Radical Equations with Extraneous Solutions: 9 Steps (34).[9]

    • First check the solution How to Solve Radical Equations with Extraneous Solutions: 9 Steps (35):
      • How to Solve Radical Equations with Extraneous Solutions: 9 Steps (36)
      • How to Solve Radical Equations with Extraneous Solutions: 9 Steps (37) ………. (substitute 5 for x)
      • How to Solve Radical Equations with Extraneous Solutions: 9 Steps (38)
      • How to Solve Radical Equations with Extraneous Solutions: 9 Steps (39)
      • How to Solve Radical Equations with Extraneous Solutions: 9 Steps (40).
      • Because your result is an incorrect statement, the original solution of How to Solve Radical Equations with Extraneous Solutions: 9 Steps (41) must be an extraneous solution that was caused by the squaring process.
    • Check the second solution How to Solve Radical Equations with Extraneous Solutions: 9 Steps (42):
      • How to Solve Radical Equations with Extraneous Solutions: 9 Steps (43)
      • How to Solve Radical Equations with Extraneous Solutions: 9 Steps (44)
      • How to Solve Radical Equations with Extraneous Solutions: 9 Steps (45)
      • How to Solve Radical Equations with Extraneous Solutions: 9 Steps (46)
      • How to Solve Radical Equations with Extraneous Solutions: 9 Steps (47)
      • In this case, you get a true statement. This shows that the solution How to Solve Radical Equations with Extraneous Solutions: 9 Steps (48) is a true solution to the original problem.
  3. 3

    Discard the extraneous solution and report your result. The extraneous solution is incorrect and can be discarded. Whatever remains is the answer to your problem. In this case, you would report that How to Solve Radical Equations with Extraneous Solutions: 9 Steps (50).[10]

    Advertisem*nt

Community Q&A

Search

Add New Question

  • Question

    What is an example of an extraneous solution?

    How to Solve Radical Equations with Extraneous Solutions: 9 Steps (51)

    Sergeantpro

    Community Answer

    For example, say that you want to find the length of a square with the given area of 25 cm squared. You do that by taking the square root of 25. If you take the square root of 25, you will have two answers, which are 5 and -5. However, -5 cm would not work since negative lengths do not really make much sense in geometry. -5 cm would be, in this case, the extraneous solution, since it is a valid answer but doesn't solve the problem.

    Thanks! We're glad this was helpful.
    Thank you for your feedback.
    If wikiHow has helped you, please consider a small contribution to support us in helping more readers like you. We’re committed to providing the world with free how-to resources, and even $1 helps us in our mission.Support wikiHow

    YesNo

    Not Helpful 1Helpful 4

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit


      Advertisem*nt

      You Might Also Like

      How toBecome Taller NaturallyHow toFry Chicken Livers
      How toGet Rid of Blackheads on Your NoseHow toForget SomeoneHow toGet Your House to Not Smell Like Your PetsHow toIronHow toTan in the SunHow toSlim Your FaceHow toFind Things You LostHow toBleach a White ShirtHow toBe a CholoHow toUse Pore Strips14 Effective Ways to Kill Cabbage Worms and Cabbage LoopersHow toRemove Leeches

      Advertisem*nt

      More References (1)

      About this article

      How to Solve Radical Equations with Extraneous Solutions: 9 Steps (65)

      Co-authored by:

      JohnK Wright V

      Texas Certified Math Teacher

      This article was co-authored by JohnK Wright V. JohnK Wright V is a Certified Math Teacher at Bridge Builder Academy in Plano, Texas. With over 20 years of teaching experience, he is a Texas SBEC Certified 8-12 Mathematics Teacher. He has taught in six different schools and has taught pre-algebra, algebra 1, geometry, algebra 2, pre-calculus, statistics, math reasoning, and math models with applications. He was a Mathematics Major at Southeastern Louisiana and he has a Bachelor of Science from The University of the State of New York (now Excelsior University) and a Master of Science in Computer Information Systems from Boston University. This article has been viewed 19,389 times.

      19 votes - 66%

      Co-authors: 2

      Updated: March 29, 2019

      Views:19,389

      • Print

      Thanks to all authors for creating a page that has been read 19,389 times.

      Did this article help you?

      Advertisem*nt

      How to Solve Radical Equations with Extraneous Solutions: 9 Steps (2024)

      FAQs

      How do you solve the radical equation check for extraneous solutions? ›

      You can only find out whether or not a solution is extraneous by plugging the solution back into the original equation.

      How to solve radical equations step by step? ›

      Radical Equations
      1. Isolate a radical. Put ONE radical on one side of the equal sign and put everything else on the other side.
      2. Eliminate the radical. Raise both sides of the equal sign to the power that matches the index on the radical. ...
      3. Solve. ...
      4. Check for extraneous solutions.
      Oct 31, 2021

      How do you find extraneous answers? ›

      To find whether your solutions are extraneous or not, you need to plug each of them back in to your given equation and see if they work. It's a very annoying process sometimes, but if employed properly can save you much grief on tests or quizzes.

      How many extraneous solutions does the equation below have 9 n 2 1? ›

      Expert-Verified Answer

      This is a cubic function and so, it have 3 solutions. No extraneous solutions.

      Why do we get extraneous solutions when solving radical equations? ›

      1 Answer. In general, extraneous solutions arise when we perform non-invertible operations on both sides of an equation. (That is, they sometimes arise, but not always.)

      How can you solve rational equations and identify extraneous solutions? ›

      Find the Least Common Denominator (LCD): Multiply each term in the equation by the LCD to clear the fractions. Solve the Equation: Simplify the resulting equation and solve for the variable. Check for Extraneous Solutions: Substitute the solutions found in step 3 back into the original equation.

      How to do radicals step by step? ›

      Solve a Radical Equation
      1. Isolate one of the radical terms on one side of the equation.
      2. Raise both sides of the equation to the power of the index.
      3. Are there any more radicals? If yes, repeat Step 1 and Step 2 again. If no, solve the new equation.
      4. Check the answer in the original equation.
      Aug 23, 2020

      What are the rules for radical equations? ›

      All exponents in the radicand must be less than the index. Any exponents in the radicand can have no factors in common with the index. No fractions appear under a radical. No radicals appear in the denominator of a fraction.

      Why is it important to check all solutions to radical equations? ›

      Make sure to check all possible answers to radical equations because you may have found some false solutions: When squaring two sides of an equation, the resulting equation is not always equivalent to the original.

      How do you control extraneous? ›

      One way of controlling the effect of such an extraneous variable is to hold the variable fixed during the experiment. For instance, IQ could be held more-or-less fixed by using as subjects only people with a tested IQ within a certain range.

      How many extraneous solutions does the equation below have: 2m 2m 3 2m 2m 3 1? ›

      Summary: The number of extraneous solutions the equation (2m)/(2m+3)-(2m)/(2m-3)=1 have is zero.

      How do you determine the possible number of solutions of an equation? ›

      If solving an equation yields a statement that is true for a single value for the variable, like x = 3, then the equation has one solution. If solving an equation yields a statement that is always true, like 3 = 3, then the equation has infinitely many solutions.

      How to check for extraneous solutions in absolute value equations? ›

      To check if any of your roots are extraneous, plug each of the roots back in to the original equation. If the root does not solve the original problem, then it is extraneous and is not a one of the solutions.

      When solving a logarithmic equation you must check for extraneous solutions? ›

      Answer and Explanation:

      A logarithmic equation has an extraneous solution when the solution (or one of the solutions) results in the equation being undefined. We get two solutions: x = − 11 , x = 1 .

      Which type of equation requires that you check for extraneous solutions? ›

      The quick answer is if the original equation has any “forbidden” values, you should always check to make sure your solution isn't one of them. again x + 1 must be nonnegative, so you need to check.

      When to check for extraneous solutions in trig equations? ›

      In trig problems, extraneous solutions usually occur when |sin x| > 1 or |cos x| > 1. . For example, sin^2 x + 3sin x + 2 = 0 has solutions sin x = -2 and sin x = -1. But for real x, sin x cannot be -2. They can also occur when the extraneous solution is not relevant to the problem.

      References

      Top Articles
      Latest Posts
      Article information

      Author: Barbera Armstrong

      Last Updated:

      Views: 5943

      Rating: 4.9 / 5 (79 voted)

      Reviews: 86% of readers found this page helpful

      Author information

      Name: Barbera Armstrong

      Birthday: 1992-09-12

      Address: Suite 993 99852 Daugherty Causeway, Ritchiehaven, VT 49630

      Phone: +5026838435397

      Job: National Engineer

      Hobby: Listening to music, Board games, Photography, Ice skating, LARPing, Kite flying, Rugby

      Introduction: My name is Barbera Armstrong, I am a lovely, delightful, cooperative, funny, enchanting, vivacious, tender person who loves writing and wants to share my knowledge and understanding with you.